To investigate the radioactive iodine-125 (I-125) seed on migrating and invading of hepatocellular carcinoma (HCC) cells and its mechanism, the irradiation of PLC and Huh7 cells was carried out with… Click to show full abstract
To investigate the radioactive iodine-125 (I-125) seed on migrating and invading of hepatocellular carcinoma (HCC) cells and its mechanism, the irradiation of PLC and Huh7 cells was carried out with I-125 seeds in vitro. Cell counting kit 8 assay was employed to measure cell viability. Cell migration was evaluated by using wound-healing assay. Cell invasion was detected by Transwell assay; RT-PCR and Western blot were used for the detection of the mRNA and proteins of TGF-β1 signaling pathway-related genes. The viability of PLC and Huh7 cells declined in a dose-dependent manner with increasing irradiation from 0 Gy, 2 Gy, 4 Gy, and 6 Gy, to 8 Gy, respectively. The IC50 of PLC and Huh7 cells were 6.20 Gy and 5.39 Gy, respectively, after 24 h of irradiation. Migration and invasion abilities of I-125 group cells were greatly weakened (P < 0.05) comparing with the control group. According to the outcomes of RT-PCR and WB, I-125 seed irradiation significantly inhibited the mRNA and protein expression of N-cadherin, vimentin, TGF-β1, p-Smad2/3, and Snail. But the mRNA and protein expressions of E-cadherin were enhanced. Rescue experiment demonstrates that TGF-β1 activator could reverse the inhibitory effects of I-125 on invasion and migration of cells. The results of in vivo experiments further verified that the I-125 seeds can inhibit the proliferation and TGF-β1 of xenographed PLC cells. In conclusion, I-125 seeds restrain the invasion and migration of HCC cells by suppressing epithelial to mesenchymal transition, which may associate with the inhibition of the TGF-β1 signaling.
               
Click one of the above tabs to view related content.