LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Prediction of Bronchopneumonia Inpatients' Total Hospitalization Expenses Based on BP Neural Network and Support Vector Machine Models

Photo by thinkmagically from unsplash

Objective BP neural network (BPNN) model and support vector machine (SVM) model were used to predict the total hospitalization expenses of patients with bronchopneumonia. Methods A total of 355 patients… Click to show full abstract

Objective BP neural network (BPNN) model and support vector machine (SVM) model were used to predict the total hospitalization expenses of patients with bronchopneumonia. Methods A total of 355 patients with bronchopneumonia from January 2018 to December 2020 were collected and sorted out. The data set was randomly divided into a training set (n = 249) and a test set (n = 106) according to 7 : 3. The BPNN model and SVM model were constructed to analyze the predictors of total hospitalization expenses. The effectiveness was compared between these two prediction models. Results The top three influencing factors and their importance for predicting total hospitalization cost by the BPNN model were hospitalization days (0.477), age (0.154), and discharge department (0.083). The top 3 factors predicted by the SVM model were hospitalization days (0.215), age (0.196), and marital status (0.172). The area under the curve of these two models is 0.838 (95% CI: 0.755~0.921) and 0.889 (95% CI: 0.819~0.959), respectively. Conclusion Both the BPNN model and SVM model can predict the total hospitalization expenses of patients with bronchopneumonia, but the prediction effect of the SVM model is better than the BPNN model.

Keywords: svm model; hospitalization expenses; total hospitalization; hospitalization; model; bpnn model

Journal Title: Computational and Mathematical Methods in Medicine
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.