LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

A Machine Learning-Based Water Potability Prediction Model by Using Synthetic Minority Oversampling Technique and Explainable AI

Photo from wikipedia

During the last few decades, the quality of water has deteriorated significantly due to pollution and many other issues. As a consequence of this, there is a need for a… Click to show full abstract

During the last few decades, the quality of water has deteriorated significantly due to pollution and many other issues. As a consequence of this, there is a need for a model that can make accurate projections about water quality. This work shows the comparative analysis of different machine learning approaches like Support Vector Machine (SVM), Decision Tree (DT), Random Forest, Gradient Boost, and Ada Boost, used for the water quality classification. The model is trained on the Water Quality Index dataset available on Kaggle. Z-score is used to normalize the dataset before beginning the training process for the model. Because the given dataset is unbalanced, Synthetic Minority Oversampling Technique (SMOTE) is used to balance the dataset. Experiments results depict that Random Forest and Gradient Boost give the highest accuracy of 81%. One of the major issues with the machine learning model is lack of transparency which makes it impossible to evaluate the results of the model. To address this issue, explainable AI (XAI) is used which assists us in determining which features are the most important. Within the context of this investigation, Local Interpretable Model-agnostic Explanations (LIME) is utilized to ascertain the significance of the features.

Keywords: water; machine learning; synthetic minority; model; minority oversampling

Journal Title: Computational Intelligence and Neuroscience
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.