LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

DL-3-N-Butylphthalide Promotes Cartilage Extracellular Matrix Synthesis and Inhibits Osteoarthritis Development by Regulating FoxO3a

Photo from wikipedia

Osteoarthritis (OA) has been reported as a progressive disease in the elderly, primarily characterized by degenerated articular cartilage. There has been no satisfactory drug for the treatment of OA. DL-3-n-butylphthalide… Click to show full abstract

Osteoarthritis (OA) has been reported as a progressive disease in the elderly, primarily characterized by degenerated articular cartilage. There has been no satisfactory drug for the treatment of OA. DL-3-n-butylphthalide (NBP), a small molecule compound extracted from celery seeds, may have antiapoptotic, antioxidant, and anti-inflammatory activities in numerous studies. However, the effects of NBP on OA and its mechanisms have been rarely reported. In this study, the effect of NBP on OA in vitro and in vivo and its possible mechanism were investigated. The results showed that NBP injection into the knee joint inhibited osteoarthritis development in a rat model of osteoarthritis induced by DMM+ACLT. NBP could increase the expressions of extracellular matrix-related components (such as type II collagen, aggrecan, proteoglycan 4, and SRY-box 9) in human osteoarthritic chondrocytes and cartilage explants. Moreover, NBP promoted the expressions of SOD and CAT. NBP upregulated the expression of FoxO3a by inhibiting the PI3K/AKT pathway, which subsequently inhibited the apoptosis of human OA chondrocytes. In conclusion, NBP promotes cartilage extracellular matrix synthesis and inhibits osteoarthritis development and the underlying mechanism related to the activation of FoxO3a.

Keywords: extracellular matrix; cartilage extracellular; promotes cartilage; osteoarthritis development; matrix synthesis

Journal Title: Oxidative Medicine and Cellular Longevity
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.