LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Assessing the Potential Value and Mechanism of Kaji-Ichigoside F1 on Arsenite-Induced Skin Cell Senescence

Photo by curology from unsplash

Chronic exposure to inorganic arsenic is a major environmental public health issue worldwide affecting more than 220 million of people. Previous studies have shown the correlation between arsenic poisoning and… Click to show full abstract

Chronic exposure to inorganic arsenic is a major environmental public health issue worldwide affecting more than 220 million of people. Previous studies have shown the correlation between arsenic poisoning and cellular senescence; however, knowledge regarding the mechanism and effective prevention measures has not been fully studied. First, the associations among the ERK/CEBPB signaling pathway, oxidative stress, and arsenic-induced skin cell senescence were confirmed using the HaCaT cell model. In the arsenic-exposed group, the relative mRNA and protein expressions of ERK/CEBPB signaling pathway indicators (ERK1, ERK2, and CEBPB), cell cycle-related genes (p21, p16INK4a), and the secretion of SASP (IL-1α, IL-6, IL-8, TGF-β1, MMP-1, MMP-3, EGF, and VEGF) and the lipid peroxidation product (MDA) were significantly increased in cells (P < 0.05), while the activity of antioxidant enzyme (SOD, GSH-Px, and CAT) was significantly decreased (P < 0.05), and an increased number of cells accumulated in the G1 phase (P < 0.05). Further Kaji-ichigoside F1 intervention experiments showed that compared to that in the arsenic-exposed group, the expression level of the activity of antioxidant enzyme was significantly increased in the Kaji-ichigoside F1 intervention group (P < 0.05), but the indicators of ERK/CEBPB signaling pathway, cell cycle-related genes, and SASP were significantly decreased (P < 0.05), and the cell cycle arrest relieved to a certain extent (P < 0.05). Our study provides some limited evidence that the ERK/CEBPB signaling pathway is involved in low-dose arsenic-induced skin cell senescence, through regulating oxidative stress. The second major finding was that Kaji-ichigoside F1 can downregulate the ERK/CEBPB signaling pathway and regulate the balance between oxidation and antioxidation, alleviating arsenic-induced skin cell senescence. This study provides experimental evidence for further understanding of Kaji-ichigoside F1, a natural medicinal plant that may be more effective in preventing and controlling arsenic poisoning.

Keywords: induced skin; cell senescence; kaji ichigoside; skin cell; cell

Journal Title: Oxidative Medicine and Cellular Longevity
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.