In this study, cells from human Chronic Myelogenous Leukemia (K562) were cultivated with CuO-TiO2-Chitosan-Berbamine nanocomposites. We examined nanocomposites using XRD, DLS, FESEM, TEM, PL, EDAX, and FTIR spectroscopy, as well… Click to show full abstract
In this study, cells from human Chronic Myelogenous Leukemia (K562) were cultivated with CuO-TiO2-Chitosan-Berbamine nanocomposites. We examined nanocomposites using XRD, DLS, FESEM, TEM, PL, EDAX, and FTIR spectroscopy, as well as MTT for cytotoxicity, and AO/EtBr for apoptotic morphology assessment. The rate of apoptosis and cell cycle arrests was determined using flow cytometry. Flow cytometry was also employed to identify pro- and antiapoptotic proteins such as Bcl2, Bad, Bax, P53, and Cyt C. The FTIR spectrum revealed that the CuO-TiO2-Chitosan-Berbamine nanocomposites were electrostatically interlocked. The nanocomposites' XRD signals revealed a hexagonal shape. In the DLS spectrum, nanocomposites were found to have a hydrodynamic diameter. As a result of their cytotoxic action, nanocomposites displayed concentration-dependent cytotoxicity. The nanocomposites, like Doxorubicin, caused cell cycle phase arrest in K562 cells. After treatment with IC50 concentrations of CuO-TiO2-Chitosan-Berbamine nanocomposites and Doxorubicin, a substantial percentage of cells were in G2/M stage arrest. Caspase-3, -7, -8, -9, Bax, Bad, Cyt C, and P53 expression were considerably enhanced in K562 cells, whereas Bcl2 expression was decreased, indicating that these cells may have therapeutic potential against human blood cancer/leukemia-derived disorders. As a result, the nanocomposites demonstrated outstanding anticancer potential against leukemic cells. CuO-TiO2-Chitosan-Berbamine, according to our findings.
               
Click one of the above tabs to view related content.