LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Improving the Accuracy of Rainfall Prediction Using Bias-Corrected NMME Outputs: A Case Study of Surabaya City, Indonesia

Photo from wikipedia

Generating an accurate rainfall prediction is a challenging work due to the complexity of the climate system. Numerous efforts have been conducted to generate reliable prediction such as through ensemble… Click to show full abstract

Generating an accurate rainfall prediction is a challenging work due to the complexity of the climate system. Numerous efforts have been conducted to generate reliable prediction such as through ensemble forecasts, the North Multi-Model Ensemble (NMME). The performance of NMME globally has been investigated in many studies. However, its performance in a specific location has not been much validated. This paper investigates the performance of NMME to forecast rainfall in Surabaya, Indonesia. Our study showed that the rainfall prediction from NMME tends to be underdispersive, which thus requires a bias correction. We proposed a new bias correction method based on gamma regression to model the asymmetric pattern of rainfall distribution and further compared the results with the average ratio method and linear regression. This study showed that the NMME performance can be improved significantly after bias correction using the gamma regression method. This can be seen from the smaller RMSE and MAE values, as well as higher R2 values compared with the results from linear regression and average ratio methods. Gamma regression improved the R2 value by about 30% higher than raw data, and it is about 20% higher than the linear regression approach. This research showed that NMME can be used to improve the accuracy of rainfall forecast in Surabaya.

Keywords: regression; accuracy rainfall; rainfall prediction; prediction; rainfall; study

Journal Title: The Scientific World Journal
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.