Background Coptisine has been widely used for treating a variety of cancer types. To date, whether pseudogene is implicated in coptisine resistance of NSCLC remains unknown. Methods We performed MTT… Click to show full abstract
Background Coptisine has been widely used for treating a variety of cancer types. To date, whether pseudogene is implicated in coptisine resistance of NSCLC remains unknown. Methods We performed MTT to assess the cell viability of A549 and Calu-1 cells. The transwell assay was used to examine the invasion of cells. TUNEL was used to determine apoptosis. Results Our data showed that coptisine treatment suppressed cell viability and invasion of NSCLC cells while contributing to apoptosis. MiR-128-3p negatively regulated MSTO2P. miR-128-3p reverted MSTO2P knockdown-attenuated cell viability and invasion, as well as promoted cell apoptosis of A549 cells. Moreover, we identified TGF-β signaling and VEGFC as key downstream effectors for MSTO2P and miR-128-3p in A549 cells. MiR-128-3p mimic inhibited TGF-β pathway-associated genes (TGFBR1, Smad2, Smad5, and Smad9), whereas miR-128-3p inhibitor exerted opposite effect. MSTO2P knockdown led to attenuated expression levels of TGFBR1, Smad2, Smad5 and Smad9. VEGFC overexpression greatly rescued miR-128-3p-modulated cell viability, invasion, and apoptosis of A549 cells. Conclusion MSTO2P plays a role in coptisine therapy of NSCLC through miR-128-3p. The findings will advance our understanding of NSCLC treatment.
               
Click one of the above tabs to view related content.