LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Preparation of Spice Extracts: Evaluation of Their Phytochemical, Antioxidant, Antityrosinase, and Anti-α-Glucosidase Properties Exploring Their Mechanism of Enzyme Inhibition with Antibrowning and Antidiabetic Studies In Vivo

Photo by nci from unsplash

Tyrosinase and α-glucosidase enzymes are known as promising target candidates for inhibitors to control unwanted pigmentation and type II diabetics mellitus. Therefore, twenty extracts as enzyme inhibitors were prepared from… Click to show full abstract

Tyrosinase and α-glucosidase enzymes are known as promising target candidates for inhibitors to control unwanted pigmentation and type II diabetics mellitus. Therefore, twenty extracts as enzyme inhibitors were prepared from edible spices: nutmeg, mace, star anise, fenugreek, and coriander aiming to explore their antioxidant, antibrowning, and antidiabetic potential. Results confirmed that all extracts showed potent antioxidant activity ranging from IC50 = 0.14 ± 0.03 to 3.69 ± 0.37 μg/mL. In addition, all extracts exhibited excellent antityrosinase (IC50 = 1.16 ± 0.06 to 71.32 ± 4.63 μg/mL) and anti-α-glucosidase (IC504.76 ± 0.71 to 42.57 ± 2.13 μg/mL) activities outperforming the corresponding standards, hydroquinone, and acarbose, respectively. Among all extracts, star anise ethyl acetate (Star anise ETAC) was found most potent inhibitor for both tyrosinase and α-glucosidase enzymes and was further studied to explore the mechanism of enzyme inhibition. Kinetic analysis revealed its irreversible but mixed-type tyrosinase inhibition with preferentially competitive mode of action. However, it binds reversibly with α-glucosidase through competitive mode of action. Further, star anise ETAC extract showed concentration dependent and posttreatment time-dependent antibrowning effect on potato slices and antidiabetic effect on diabetic rabbits in vivo proposing it promising candidate for tyrosinase-rooted antibrowning and α-glucosidase-associated diabetes management for future studies.

Keywords: inhibition; glucosidase; antibrowning antidiabetic; mechanism enzyme; star anise; anti glucosidase

Journal Title: BioMed Research International
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.