LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Bioinspired Synthesis of Zinc Molybdate Nanoparticles: An Efficient Material for Growth Inhibition of Escherichia coli, Staphylococcus aureus, and Dye Remediation

Photo by nate_dumlao from unsplash

Zinc molybdate nanoparticles with molybdate are synthesized through green method with different salt precursors using Moringa oleifera leaf extract. Those nanoparticles had structural, vibrational, and morphological properties, which were determined… Click to show full abstract

Zinc molybdate nanoparticles with molybdate are synthesized through green method with different salt precursors using Moringa oleifera leaf extract. Those nanoparticles had structural, vibrational, and morphological properties, which were determined by X-ray diffraction (XRD). The crystalline size of synthesized zinc molybdate was 24.9 nm. Fourier transform infrared (FTIR) spectroscopy and field emission scanning electron microscopy (FE-SEM) clearly showed the attachment of molybdate with ZnO. The synthesized nanomaterial was also characterized through UV-visible spectroscopy which had 4.40 eV band gap energy. Those nanoparticles were also characterized via thermogravimetric analysis (TGA-DTA) and photoluminance spectroscopy (PL). ZnMoO4 had photocatalytic property via methylene blue dye. After 190 minutes, the dye changed to colourless from blue colour. The degradation efficiency was around 92.8%. It also showed their antibacterial effect via Escherichia coli and Staphylococcusaureus bacterial strains. In the presence of light and air, nanoparticles of ZnMoO4 inhibit the growth of cells of E. coli and S. aureus bacterial strains because of ROS (reactive oxygen species) generation. Because of the formation of singlet oxygen ( O 2 ∗ − ), hydrogen oxide radical ( − O H ∗ ), and hydrogen peroxide (H2O2), ZnMoO4 showed photodegradation reaction against aq. solution of methylene blue dye at 6 pH with constant time interval. With time, the activity of ZnMoO4 also decreased because of the generation of a layer of hydrogen oxide (-OH) on nanomaterial surface, which could be washed with ethanol and distilled water. After drying, the catalytic Zinc molybdate nanoparticles could be reused again in the next catalytic reaction.

Keywords: zinc molybdate; molybdate nanoparticles; spectroscopy; molybdate; dye

Journal Title: Bioinorganic Chemistry and Applications
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.