LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Study on Energy Conversion Efficiency and Structure Optimization of the Multorifices Nozzle for Radial Jet Drilling

Photo from wikipedia

Underground gas storage (UGS) is a crucial method for mitigating seasonal fluctuations in natural gas consumption. However, in China, UGS is primarily achieved through the conversion of abandoned gas reservoirs… Click to show full abstract

Underground gas storage (UGS) is a crucial method for mitigating seasonal fluctuations in natural gas consumption. However, in China, UGS is primarily achieved through the conversion of abandoned gas reservoirs with limited storage capacity. Radial jet drilling (RJD) is an effective technology for the secondary development of depleted reservoirs. The multiorifice nozzle is a critical component that can efficiently break rock and create radial holes to increase gas production. In this study, we investigate the impact of nozzle structure on energy conversion efficiency through numerical simulations and experiments. Additionally, we design a swirling multiorifice nozzle and verify its effectiveness in field applications. Our findings indicate that the nozzle pressure drop and vorticity are primarily generated at the acute angle of the orifices. The number of forward orifices is directly proportional to energy loss, while the discharge coefficient and hydraulic performance initially increase and then decrease. Swirling multiorifice nozzle have fewer backward orifices, so they have less energy loss and a larger discharge coefficient. It has achieved better rock-breaking results in field applications. In conclusion, this study provides theoretical guidance and technical support for the secondary development of gas storage.

Keywords: radial jet; gas; energy; jet drilling; energy conversion

Journal Title: Geofluids
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.