LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Study on Influence of Moisture Content on Strength and Brittle-Plastic Failure Characteristics of Xiashu Loess

Photo by a2eorigins from unsplash

To reveal the influence of water content on the strength characteristics and brittle-plastic failure process of Xiashu loess, the direct shear test and unconfined compressive strength test of Xiashu loess… Click to show full abstract

To reveal the influence of water content on the strength characteristics and brittle-plastic failure process of Xiashu loess, the direct shear test and unconfined compressive strength test of Xiashu loess with different water content were carried out, and the influence of water content on its strength characteristics and brittle-plastic failure transformation characteristics was studied. Eight kinds of Xiashu loess with different moisture contents were designed, and a direct shear test and uniaxial compression test were carried out, respectively. The results show that with the increase in water content, the shear strength and unconfined compressive strength of Xiashu loess decrease continuously. The influence of water content on cohesion in the shear strength index is greater than that of the internal friction angle. The relationship curve between cohesion and internal friction angle and water content shows obvious segmentation. When approaching the optimal water content, the downward trend is slowed down. When the water content is constant, the shear strength of the sample will also increase with the increase of normal stress. When the water content is 12% to 15%, the failure mode of Xiashu loess is a brittle failure, and the unconfined compressive strength decreases by 43.23%. When the water content is 15% to 16%, the failure mode of Xiashu loess is a transitional failure, and the unconfined compressive strength decreases by 60.38%. When the water content is greater than 16%, Xiashu loess shows plastic failure, and the unconfined compressive strength decreases slightly.

Keywords: strength; water content; xiashu loess; failure; content

Journal Title: Advances in Civil Engineering
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.