LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Inhibition of TRF2 Leads to Ferroptosis, Autophagic Death, and Apoptosis by Causing Telomere Dysfunction

Photo by matmacq from unsplash

Background Gastric cancer (GC) is an aggressive malignancy with a high mortality rate and poor prognosis. Telomeric repeat-binding factor 2 (TRF2) is a critical telomere protection protein. Emerging evidence indicates… Click to show full abstract

Background Gastric cancer (GC) is an aggressive malignancy with a high mortality rate and poor prognosis. Telomeric repeat-binding factor 2 (TRF2) is a critical telomere protection protein. Emerging evidence indicates that TRF2 may be an essential treatment option for GC; however, the exact mechanism remains largely unknown. Objective We aimed to explore the role of TRF2 in GC cells. The function and molecular mechanisms of TRF2 in the pathogenesis of GC were mainly discussed in this study. Methods Relevant data from GEPIA and TCGA databases regarding TRF2 gene expression and its prognostic significance in GC samples were analyzed. Analysis of 53BP1 foci at telomeres by immunofluorescence, metaphase spreads, and telomere-specific FISH analysis was carried out to explore telomere damage and dysfunction after TRF2 depletion. CCK8 cell proliferation, trypan blue staining, and colony formation assay were performed to evaluate cell survival. Apoptosis and cell migration were determined with flow cytometry and scratch-wound healing assay, respectively. qRT-PCR and Western blotting were carried out to analyze the mRNA and protein expression levels after TRF2 depletion on apoptosis, autophagic death, and ferroptosis. Results By searching with GEPIA and TCGA databases, the results showed that the expression levels of TRF2 were obviously elevated in the samples of GC patients, which was associated with adverse prognosis. Knockdown of TRF2 suppressed the cell growth, proliferation, and migration in GC cells, causing significant telomere dysfunction. Apoptosis, autophagic death, and ferroptosis were also triggered in this process. The pretreatment of chloroquine (autophagy inhibitor) and ferrostatin-1 (ferroptosis inhibitor) improved the survival phenotypes of GC cells. Conclusion Our data suggest that TRF2 depletion can inhibit cell growth, proliferation, and migration through the combined action of ferroptosis, autophagic death, and apoptosis in GC cells. The results indicate that TRF2 might be used as a potential target to develop therapeutic strategies for treating GC.

Keywords: autophagic death; apoptosis; trf2; dysfunction; ferroptosis

Journal Title: Oxidative Medicine and Cellular Longevity
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.