LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

A genome-wide CRISPR activation screen identifies PRRX2 as a regulator of enzalutamide resistance in prostate cancer.

Photo from wikipedia

Androgen receptor (AR) pathway inhibitors are the mainstay treatment for advanced prostate cancer, but resistance to therapy is common. Here, we used a CRISPR activation screen in metastatic castration-sensitive prostate… Click to show full abstract

Androgen receptor (AR) pathway inhibitors are the mainstay treatment for advanced prostate cancer, but resistance to therapy is common. Here, we used a CRISPR activation screen in metastatic castration-sensitive prostate cancer cells to identify genes that promote resistance to AR inhibitors. Activation of the TGF-β target gene PRRX2 promoted enzalutamide resistance. PRRX2 expression was highest in double-negative prostate cancer (DNPC), which lack AR signaling and neuroendocrine differentiation, and a PRRX2-related gene signature identified a subset of DNPC patients with reduced overall survival. PRRX2-expressing cells showed alterations in the CDK4/6/Rb/E2F and BCL2 pathways. Accordingly, treatment with CDK4/6 and BCL2 inhibitors sensitized PRRX2-expressing, castration-resistant tumors to enzalutamide. Overall, PRRX2 was identified as a driver of enzalutamide resistance. The PRRX2 signature merits investigation as a biomarker of enzalutamide resistance in prostate cancer that could be reversed with CDK4/6 and BCL2 inhibitors.

Keywords: enzalutamide resistance; cancer; resistance; prostate cancer; prrx2

Journal Title: Cancer research
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.