LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Combined CD28 and 4-1BB Costimulation Potentiates Affinity-tuned Chimeric Antigen Receptor–engineered T Cells

Photo from wikipedia

Purpose: Targeting nonspecific, tumor-associated antigens (TAA) with chimeric antigen receptors (CAR) requires specific attention to restrict possible detrimental on-target/off-tumor effects. A reduced affinity may direct CAR-engineered T (CAR-T) cells to… Click to show full abstract

Purpose: Targeting nonspecific, tumor-associated antigens (TAA) with chimeric antigen receptors (CAR) requires specific attention to restrict possible detrimental on-target/off-tumor effects. A reduced affinity may direct CAR-engineered T (CAR-T) cells to tumor cells expressing high TAA levels while sparing low expressing normal tissues. However, decreasing the affinity of the CAR-target binding may compromise the overall antitumor effects. Here, we demonstrate the prime importance of the type of intracellular signaling on the function of low-affinity CAR-T cells. Experimental Design: We used a series of single-chain variable fragments (scFv) with five different affinities targeting the same epitope of the multiple myeloma–associated CD38 antigen. The scFvs were incorporated in three different CAR costimulation designs and we evaluated the antitumor functionality and off-tumor toxicity of the generated CAR-T cells in vitro and in vivo. Results: We show that the inferior cytotoxicity and cytokine secretion mediated by CD38 CARs of very low–affinity (Kd < 1.9 × 10−6 mol/L) bearing a 4-1BB intracellular domain can be significantly improved when a CD28 costimulatory domain is used. Additional 4-1BB signaling mediated by the coexpression of 4-1BBL provided the CD28-based CD38 CAR-T cells with superior proliferative capacity, preservation of a central memory phenotype, and significantly improved in vivo antitumor function, while preserving their ability to discriminate target antigen density. Conclusions: A combinatorial costimulatory design allows the use of very low–affinity binding domains (Kd < 1 μmol/L) for the construction of safe but also optimally effective CAR-T cells. Thus, very-low-affinity scFvs empowered by selected costimulatory elements can enhance the clinical potential of TAA-targeting CARs.

Keywords: low affinity; car cells; affinity; chimeric antigen; car

Journal Title: Clinical Cancer Research
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.