LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Development of a Theranostic Convergence Bioradiopharmaceutical for Immuno-PET Based Radioimmunotherapy of L1CAM in Cholangiocarcinoma Model

Photo by jonasvincentbe from unsplash

Purpose: Cholangiocarcinoma is a malignancy of bile duct with a poor prognosis. Conventional chemotherapy and radiotherapy are generally ineffective, and surgical resection is the only curative treatment for cholangiocarcinoma. L1-cell… Click to show full abstract

Purpose: Cholangiocarcinoma is a malignancy of bile duct with a poor prognosis. Conventional chemotherapy and radiotherapy are generally ineffective, and surgical resection is the only curative treatment for cholangiocarcinoma. L1-cell adhesion molecule (L1CAM) has been known as a novel prognostic marker and therapeutic target for cholangiocarcinoma. This study aimed to evaluate the feasibility of immuno-PET imaging–based radioimmunotherapy using radiolabeled anti-L1CAM antibody in cholangiocarcinoma xenograft model. Experimental Design: We prepared a theranostic convergence bioradiopharmaceutical using chimeric anti-L1CAM antibody (cA10-A3) conjugated with 1,4,7-triazacyclononane-1,4,7-triacetic acid (NOTA) chelator and labeled with 64Cu or 177Lu and evaluated the immuno-PET or SPECT/CT imaging and biodistribution with 64Cu-/177Lu-cA10-A3 in various cholangiocarcinoma xenograft models. Therapeutic efficacy and response monitoring were performed by 177Lu-cA10-A3 and 18F-FDG-PET, respectively, and immunohistochemistry was done by TUNEL and Ki-67. Results: Radiolabeled cA10-A3 antibodies specifically recognized L1CAM in vitro, clearly visualized cholangiocarcinoma tumors in immuno-PET and SPECT/CT imaging, and differentiated the L1CAM expression level in cholangiocarcinoma xenograft models. 177Lu-cA10-A3 (12.95 MBq/100 μg) showed statistically significant reduction in tumor volumes (P < 0.05) and decreased glucose metabolism (P < 0.01). IHC analysis revealed 177Lu-cA10-A3 treatment increased TUNEL-positive and decreased Ki-67-positive cells, compared with saline, cA10-A3, or 177Lu-isotype. Conclusions: Anti-L1CAM immuno-PET imaging using 64Cu-cA10-A3 could be translated into the clinic for characterizing the pharmacokinetics and selecting appropriate patients for radioimmunotherapy. Radioimmunotherapy using 177Lu-cA10-A3 may provide survival benefit in L1CAM-expressing cholangiocarcinoma tumor. Theranostic convergence bioradiopharmaceutical strategy would be applied as imaging biomarker-based personalized medicine in L1CAM-expressing patients with cholangiocarcinoma.

Keywords: cholangiocarcinoma; l1cam; immuno pet; ca10

Journal Title: Clinical Cancer Research
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.