The MRN complex, composed of MRE11A, RAD50, and NBN, mediates vital molecular functions to maintain genomic stability and hence protect against related disorders. Germline mutations in the MRN genes predispose… Click to show full abstract
The MRN complex, composed of MRE11A, RAD50, and NBN, mediates vital molecular functions to maintain genomic stability and hence protect against related disorders. Germline mutations in the MRN genes predispose to three different syndromes: ataxia-telangiectasia-like disorder (MRE11A deficiency), Nijmegen breakage syndrome (NBS; NBN deficiency), and NBS-like disorder (RAD50 deficiency). The potential cancer component of these syndromes in addition to the close physical and functional proximity of the MRN complex to BRCA1 has promoted the MRN genes as candidate risk genes for developing breast cancer. This notion has been challenged by independent large-scale population-based studies. Despite having their two-decade old candidacy as breast cancer genes close to being refuted, it has recently been reported that the MRN genes rise to have potential new roles in clonal hematopoiesis. In this article, we discuss the history and current status of MRN genes' clinical utility in breast cancer and then focus on their recently uncovered and less understood roles in clonal hematopoiesis that likely predispose to health-related disorders such as hematologic malignancies and/or cardiovascular morbid events.
               
Click one of the above tabs to view related content.