Abstract Fusion of the E-26 transformation-specific (ETS)-related gene (ERG) with transmembrane serine protease 2 (TMPRSS2) is a crucial step in the occurrence and progression of approximately 50% of prostate cancers.… Click to show full abstract
Abstract Fusion of the E-26 transformation-specific (ETS)-related gene (ERG) with transmembrane serine protease 2 (TMPRSS2) is a crucial step in the occurrence and progression of approximately 50% of prostate cancers. Despite significant progress in drug discovery, ERG inhibitors have yet to be approved for the clinical treatment of prostate cancer. In this study, we used computer-aided drug design (CADD)–based virtual screening to screen for potential inhibitors of ERG. In vivo and in vitro methods revealed that nifuroxazide (NFZ) inhibited the proliferation of a TMPRSS2:ERG fusion-positive prostate cancer cell line (VCaP) with an IC50 lower than that of ERG-negative prostate cancer cell lines (LNCaP, DU145, and WPMY cells). Poly [ADP-ribose] polymerase 1, the critical mediator of parthanatos, is known to bind ERG and is required for ERG-mediated transcription. NFZ blocked this interaction and overly activated PARP1, leading to cell death that was reduced by olaparib, a PARP1 inhibitor. These results show that NFZ inhibits ERG, leading to parthanatic cell death.
               
Click one of the above tabs to view related content.