Oncolytic viruses (OVs) are live viruses that can selectively replicate in cancer cells. We have engineered an OV (CF33) to make it cancer-selective through the deletion of its J2R (thymidine… Click to show full abstract
Oncolytic viruses (OVs) are live viruses that can selectively replicate in cancer cells. We have engineered an OV (CF33) to make it cancer-selective through the deletion of its J2R (thymidine kinase) gene. Additionally, this virus has been armed with a reporter gene, human sodium iodide symporter (hNIS), to facilitate non-invasive imaging of tumors using positron emission tomography (PET). In this study we evaluated the oncolytic properties of the virus (CF33-hNIS) in liver cancer model, and its usefulness in tumor imaging. The virus was found to efficiently kill liver cancer cells and the virus-mediated cell death exhibited characteristics of immunogenic death based on the analysis of 3 damage associate molecular patterns (DAMPs): calreticulin, ATP and HMGB1. Furthermore, local or systemic administration of a single dose of the virus showed anti-tumor efficacy against a liver cancer xenograft model in mice and significantly increased survival of treated mice. Lastly, PET scanning was performed following injection of the radioisotope I-124, for imaging of tumors, and a single dose of virus as low as 1E03 pfu, administered intratumorally (I.T.) or intravenously (I.V.), allowed for PET imaging of tumors. In conclusion, CF33-hNIS is safe and effective in controlling human tumor xenografts in nude mice, and it also facilitates non-invasive imaging of tumors.
               
Click one of the above tabs to view related content.