Dyregulation of autophagy is implicated in human cancers and the mechanism details remains largely unclear. Herein we report the regulatory role of miR-638 in autophagy of esophageal squamous cell carcinoma… Click to show full abstract
Dyregulation of autophagy is implicated in human cancers and the mechanism details remains largely unclear. Herein we report the regulatory role of miR-638 in autophagy of esophageal squamous cell carcinoma (ESCC) and breast cancer cells. We found that miR-638 overexpression promotes starvation- and rapamycin-induced autophagy. In ESCC and breast cancer cells, miR-638 acts as an oncogene and promote cell proliferation, migration, as well as invasion in vitro and in vivo. In accordance with this, we observed significantly higher miR-638 expression in ESCC and breast cancer tissues compared to normal tissues. To further elucidate regulatory mechanisms of miR-638 in autophagy, we performed a computational nomination of its target genes through intersecting the results of multiple prediction algorithms. DACT3, a key regulator of Wnt/β-catenin signaling, was predicted to be regulated by miR-638 by all programs and confirmed by experimental results. Depletion of DACT3 phenocopied effects of miR-638 overexpression, demonstrating its importance in autophagy. These results elucidate that the miR-638-DACT3 axis might be an important molecular pathway in controlling and autophagy and tumorigenesis. Our data in clinical tissue samples highlight miR-638 and DACT3 with histological marker for cancer detection and potentially therapeutic implications. Citation Format: Ming Yang. MiR-638 promotes autophagy and malignant phenotypes of cancer cells via directly suppressing DACT3 [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2017; 2017 Apr 1-5; Washington, DC. Philadelphia (PA): AACR; Cancer Res 2017;77(13 Suppl):Abstract nr 2538. doi:10.1158/1538-7445.AM2017-2538
               
Click one of the above tabs to view related content.