The retinoblastoma tumor suppressor (RB) is mechanistically linked to suppression of E2F1-mediated cell cycle regulation. Abrogation of RB function is associated with poor clinical outcome across various tumor types, which… Click to show full abstract
The retinoblastoma tumor suppressor (RB) is mechanistically linked to suppression of E2F1-mediated cell cycle regulation. Abrogation of RB function is associated with poor clinical outcome across various tumor types, which frequently elicit a preference for either RB depletion or functional inactivation, yet the basis for selectivity is unknown. Here, examination of RB pathway alterations in advanced prostate cancer revealed that cyclin dependent kinase (CDK)/cyclin/CDKi alterations are infrequent, and identify RB loss as the major mechanism of pathway disruption in human disease. Furthermore, RB status was readily traced through cell-free DNA analyses in human specimens, thus identifying new ways to assign RB status in the clinical setting. Strikingly, RB depletion in human disease was not associated with a higher Ki67 index, indicating a role for the RB/E2F1 pathway in regulating processes distinct from cell cycle control and associated with lethal-stage disease. Subsequent mechanistic investigation utilized isogenic prostate cancer models, wherein RB could be differentially inactivated through depletion or through hormone-induced, CDK-mediated phosphorylation. Unbiased molecular interrogation uncovered a novel E2F1 cistrome and downstream engagement of transcriptional networks exclusively observed after RB loss, with binding specificity divergent from canonically described E2F1 binding patterns. Additionally, E2F1 cistrome alterations elicited by RB depletion were seen to be distinct from those after phosphorylation-induced RB functional inactivation, providing needed insight into the basis of selectivity for RB loss versus CDK-mediated inactivation observed in human disease. Analyses of human CRPC tumor samples further underscored the clinical relevance of RB loss-induced gene expression programs, which were significantly correlated with reprogrammed E2F1 binding identified herein. Taken together, the studies presented are the first to identify the consequences of RB loss, demonstrating molecular distinction from RB inactivation and illustrating the clinical relevance of RB loss-induced E2F rewiring. Citation Format: Christopher McNair, Kexin Xu, Amy C. Mandigo, Matteo Benelli, Benjamin Leiby, Daniel Rodrigues, Johan Lindberg, Henrik Gronberg, Bram De Laere, Luc Dirix, Tapio Visakorpi, Fugen Li, Felix Y. Feng, Johann de Bono, Francesca Demichelis, Mark A Rubin, Myles Brown, Karen E. Knudsen. Differential impact of RB pathway status on E2F1 reprogramming and disease progression in human prostate cancer [abstract]. In: Proceedings of the AACR Special Conference: Prostate Cancer: Advances in Basic, Translational, and Clinical Research; 2017 Dec 2-5; Orlando, Florida. Philadelphia (PA): AACR; Cancer Res 2018;78(16 Suppl):Abstract nr IA03.
               
Click one of the above tabs to view related content.