Glioblastoma is a universally lethal cancer driven by glioblastoma stem cells (GSCs). Here, we interrogated N6-methyladenosine (m6A) mRNA modifications in GSCs by methyl RNA-immunoprecipitation followed by sequencing (meRIP-seq) and transcriptome… Click to show full abstract
Glioblastoma is a universally lethal cancer driven by glioblastoma stem cells (GSCs). Here, we interrogated N6-methyladenosine (m6A) mRNA modifications in GSCs by methyl RNA-immunoprecipitation followed by sequencing (meRIP-seq) and transcriptome analysis, finding transcripts marked by m6A often upregulated compared to normal neural stem cells (NSCs). Interrogating m6A regulators, GSCs displayed preferential expression, as well as in vitro and in vivo dependency, of the m6A reader, YTHDF2, in contrast to NSCs. While YTHDF2 has been reported to destabilize mRNAs, YTHDF2 stabilized MYC and VEGFA transcripts in GSCs in an m6A-dependent manner. We identified IGFBP3 as a downstream effector of the YTHDF2-MYC axis in GSCs. The IGF1/IGF1R inhibitor, linsitinib, preferentially targeted YTHDF2-expressing cells, inhibiting GSC viability without affecting NSCs and impairing in vivo glioblastoma growth. Thus, YTHDF2 links RNA epitranscriptomic modifications and GSC growth, laying the foundation for the YTHDF2-MYC-IGFBP3 axis as a specific and novel therapeutic target in glioblastoma.
               
Click one of the above tabs to view related content.