LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

C/EBPa confers dependence to fatty acid anabolic pathways and vulnerability to lipid oxidative stress-induced ferroptosis in FLT3-mutant leukemia.

Photo from wikipedia

While transcription factor C/AAT-enhancer binding protein a (C/EBPa) is critical for normal and leukemic differentiation, its role on cell and metabolic homeostasis is largely unknown in cancer. Here, multi-omics analyses… Click to show full abstract

While transcription factor C/AAT-enhancer binding protein a (C/EBPa) is critical for normal and leukemic differentiation, its role on cell and metabolic homeostasis is largely unknown in cancer. Here, multi-omics analyses uncovered a coordinated activation of C/EBPa and Fms-like tyrosine kinase 3 (FLT3) that increased lipid anabolism in vivo and in patients with FLT3-mutant acute myeloid leukemia (AML). Mechanistically, C/EBPa regulated FASN-SCD axis to promote fatty acid (FA) biosynthesis and desaturation. We further demonstrated that FLT3 or C/EBPa inactivation decreased mono-unsaturated FA incorporation to membrane phospholipids through SCD downregulation. Consequently, SCD inhibition enhanced susceptibility to lipid redox stress that was exploited by combining FLT3 and glutathione peroxidase 4 inhibition to trigger lipid oxidative stress, enhancing ferroptotic death of FLT3-mutant AML cells. Altogether, our study reveals a C/EBPa function in lipid homeostasis and adaptation to redox stress, and a previously unreported vulnerability of FLT3-mutant AML to ferroptosis with promising therapeutic application.

Keywords: flt3; lipid oxidative; oxidative stress; fatty acid; flt3 mutant

Journal Title: Cancer discovery
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.