LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Design and Validation of Inducible TurboCARsTM with Tunable Induction and Combinatorial Cytokine Signaling.

Photo by jan_huber from unsplash

Although cytokine support can enhance CAR T-cell function, co-administering cytokines or engineering CAR T cells to secrete cytokines can result in toxicities. To mitigate these safety risks, we engineered iTurboCARTM… Click to show full abstract

Although cytokine support can enhance CAR T-cell function, co-administering cytokines or engineering CAR T cells to secrete cytokines can result in toxicities. To mitigate these safety risks, we engineered iTurboCARTM T cells that coexpress a novel inducible Turbo (iTurbo) cytokine signaling domain. iTurbo domains consist of modular components that are customizable to a variety of activating inputs, as well as cytokine signaling outputs multiplexable for combinatorial signaling outcomes. Unlike most canonical cytokine receptors that are heterodimeric, iTurbo domains leverage a compact, homodimeric design that minimizes viral vector cargo. Using an iTurbo domain activated by the clinically validated dimerizer, AP1903, homodimeric iTurbo domains instigated signaling that mimicked the endogenous heterodimeric cytokine receptor. Different iTurbo domains programmed iTurboCAR T cells towards divergent phenotypes and resulted in improved anti-tumor efficacy. iTurbo domains, therefore, offer the flexibility for user-programmable signaling outputs, permitting control over cellular phenotype and function, while minimizing viral cargo footprint.

Keywords: cytokine; cytokine signaling; iturbo domains; design validation; iturbo

Journal Title: Cancer immunology research
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.