LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Abstract B46: Roles for LKB1 at the immune synapse during B-cell activation and antitumor responses

Photo from wikipedia

Defense from infection or cancer is provided by coordinated actions of the innate and adaptive immune system, including B lymphocytes that generate antibodies (Abs) against pathogens or tumor antigens. B… Click to show full abstract

Defense from infection or cancer is provided by coordinated actions of the innate and adaptive immune system, including B lymphocytes that generate antibodies (Abs) against pathogens or tumor antigens. B cells establish immune synapses with antigen-presenting cells during activation to initiate Ab-production, which may include entrance into a germinal center (GC) reaction to generate very high-affinity Abs. Establishment of an immune synapse requires polarity proteins to coordinate uptake and processing of external antigens. For this, there is a highly conserved family of partitioning defective (Par) proteins that mediates cell polarity in multiple cell types. In particular, Par-3, a member of the Par polarity complex (Par-3, aPKC, Par-6), is a key protein that localizes to the immune synapse and is required for B cell polarization and immune synapse formation. Recently, we showed that LKB1, the mammalian homolog of Par-4 and a regulator of energy metabolism, controls B cell activation, GC formation and differentiation into Ab-producing plasma cells. However, roles for LKB1 in B cell polarity, immune synapse formation and anti-tumor immunity are unknown. Based on previous studies showing that LKB1 induces cell polarity and co-localizes with Par-3, we hypothesize that LKB1 is required for Par complex assembly and controls immune synapse formation during B cell activation. Subcellular analysis of LKB1 by immunofluorescence microscopy in mouse primary B cells reveals LKB1 co-localization with aPKC in membrane protrusions required for immune synapse formation. Interestingly, B cell specific LKB1 knock out (BKO) mice exhibit mislocalization of aPKC/Par complex, loss of lymphoid tissue polarity and spontaneous B cell activation that results in the formation of giant GCs and secretion of proinflammatory cytokines and chemokines. Similar inflammatory profiles with T cell chemoattractants are known to recruit CD8+ cytotoxic T lymphocytes (CTLs) into solid tumors, such as melanoma. These similarities suggest that LKB1 inactivated B cells in the tumor microenvironment could stimulate T cell infiltrates into solid tumors. Our studies suggest that physiologic inactivation of LKB1 in B cells controls B cell activation, GC formation and potentially infiltration of T cells in the tumor microenvironment during anti-tumor responses. We are currently utilizing an exciting genetic mouse melanoma model to examine the role of LKB1 in promoting anti-tumor immunity. Together, our studies assess LKB1 as a target for augmenting adaptive immunity against cancer. Citation Format: Laura Jimenez, Lynnea Waters, Diane N.H. Kim, Nicole Walsh, Michael A. Teitell. Roles for LKB1 at the immune synapse during B-cell activation and antitumor responses [abstract]. In: Proceedings of the AACR Special Conference on Tumor Immunology and Immunotherapy; 2017 Oct 1-4; Boston, MA. Philadelphia (PA): AACR; Cancer Immunol Res 2018;6(9 Suppl):Abstract nr B46.

Keywords: cell activation; immune synapse; cell; tumor

Journal Title: Cancer immunology research
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.