LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Abstract A21: Engineering antigen-specific natural killer cells against the melanoma-associated antigen tyrosinase via TCR gene transfer

Photo from wikipedia

Introduction of chimeric antigen receptors (CARs) to natural killer (NK) cells has so far been the only practical method for specific targeting of NK cells against surface antigens. In contrast,… Click to show full abstract

Introduction of chimeric antigen receptors (CARs) to natural killer (NK) cells has so far been the only practical method for specific targeting of NK cells against surface antigens. In contrast, T-cell receptor (TCR) gene therapy can supply large populations of cytotoxic T-lymphocytes (CTL) genetically modified to express a TCR that can also target intracellular antigens. However, the mispairing of endogenous and genetically transferred TCR subunits constitutes a bottleneck in the development of safe therapies as it often leads to formation of TCRs with unknown specificity. In order to overcome this obstacle and enable intracellular antigen targeting, we propose the use of NK cells for TCR gene therapy. In this study, we approach the obstacles associated with TCR gene therapy from a unique perspective that results in MHC-I-restricted epitope-specific targeting of tumors cells through expression of a functional TCR complex on NK cells. Our results show that the ectopic expression of CD3δ, CD3γ, and CD3e chains along with TCR α/β gene delivery to NK cells enables the functional expression of a TCR specific to the HLA-A2-restiricted tyrosinase-derived melanoma epitope, Tyr368-379. NK cells expressing a functional TCR exhibit the capacity to degranulate in an antigen-specific manner in response to engagement of the cognate peptide/MHC ligand on target cells. In addition, upon engagement of their TCR, NK cells are fully capable of producing proinflammatory cytokines IFNγ and TNF-α, a signature mark of NK cell activation and immune cell recruitment. Finally, NK-TCR cells exhibit MHC-I-restricted antigen detection and antigen-specific lysis of tumor cells both in vitro and in vivo. Antigen-specific targeting of NK cells via TCR gene delivery stands out as a unique discovery providing a novel tool in the field of adoptive immunotherapy that can also overcome the major hurdle of “mispairing” in TCR gene therapy. Clinical trials using NK cells, including genetically modified NK cells expressing activating receptors or CARs, have clearly demonstrated a significant benefit in patients with various malignancies. The overall safety profile and promising clinical benefits of NK cells combined with the exclusive antigen specificity of the TCR, all together provide a novel approach in the design of efficient antigen-specific adoptive immunotherapy. Citation Format: Ayhan Parlar, Ece C. Sayitoglu, Cevriye Pamukcu, Anna-Maria Georgoudaki, Didem Ozkazanc, Mertkaya Aras, Benjamin Josey, Michael Chrobok, Suzanne Branecki, Pegah Zahedimaram, Lolai Ikromzoda, Evren Alici, Batu Erman, Tolga Sutlu, Adil D. Duru. Engineering antigen-specific natural killer cells against the melanoma-associated antigen tyrosinase via TCR gene transfer [abstract]. In: Proceedings of the AACR Special Conference on Tumor Immunology and Immunotherapy; 2018 Nov 27-30; Miami Beach, FL. Philadelphia (PA): AACR; Cancer Immunol Res 2020;8(4 Suppl):Abstract nr A21.

Keywords: antigen specific; immunology; antigen; tcr gene

Journal Title: Cancer immunology research
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.