Despite promising results with FLT3 inhibitors (FLT3i), response durations remain short. We studied pretreatment and relapse bone marrow samples from patients with FLT3-mutated acute myeloid leukemia (AML) treated with FLT3i-based… Click to show full abstract
Despite promising results with FLT3 inhibitors (FLT3i), response durations remain short. We studied pretreatment and relapse bone marrow samples from patients with FLT3-mutated acute myeloid leukemia (AML) treated with FLT3i-based therapies (secondary resistance cohort), and pretreatment bone marrow samples from patients with no response to FLT3i-based therapies (primary resistance cohort). Targeted next-generation sequencing (NGS) at relapse identified emergent mutations involving on-target FLT3, epigenetic modifiers, RAS/MAPK pathway, and less frequently WT1 and TP53. RAS/MAPK and FLT3-D835 mutations emerged most commonly following type I and II FLT3i-based therapies, respectively. Patients with emergent mutations at relapse had inferior overall survival compared with those without emergent mutations. Among pretreatment RAS-mutated patients, pretreatment cohort-level variant allelic frequencies for RAS were higher in nonresponders, particularly with type I FLT3i-based therapies, suggesting a potential role in primary resistance as well. These data demonstrate distinct pathways of resistance in FLT3-mutated AML treated with type I versus II FLT3i. SIGNIFICANCE: Sequential NGS-based mutational analysis at relapse after FLT3i-based therapies showed distinct pathways of secondary resistance between type I and II FLT3i. FLT3 mutations may be lost at relapse after FLT3i-based therapies. Pretreatment RAS/MAPK mutations may also be associated with primary resistance in patients treated with type I FLT3i.See related commentary by Shastri et al., p. 113.
               
Click one of the above tabs to view related content.