Objective: The aim of this work was to raise awareness of problems using digital applications for examining, teaching, and applying telecytology at King Abdulaziz Medical City (KAMC), Riyadh, Saudi Arabia;… Click to show full abstract
Objective: The aim of this work was to raise awareness of problems using digital applications for examining, teaching, and applying telecytology at King Abdulaziz Medical City (KAMC), Riyadh, Saudi Arabia; University of Nebraska Medical Center (UNMC), Omaha, NE, USA; and University of Pittsburgh Medical Center (UPMC), Pittsburgh, PA, USA. The objective was to rationalize problems and propose alternative digital approaches. Study Design: We sought to identify solutions to improve the following: (a) interpretive examination scores at KAMC for complex cytological templates (i.e., high-grade squamous intraepithelial lesions [HSIL]) when using static digital images (SDI) of cells in regions of interest (ROI); (b) visualization of cells in 3D clusters when teaching at UNMC using 2D and 3D whole-slide imaging (WSI); and (c) visualization of cells through streaming telecytology at UPMC. Results: Composite SDI (CSDI) improved test scores for complex interpretations (i.e., HSIL) by converging diagnostic criteria from multiple ROI. Multiplane focusing through z-stacked WSI facilitated the teaching of cytological entities characterized by 3D cell clusters and consultative telecytology through robotic cell analysis. Conclusions: Adequately visualized cytomorphology and multiplane focusing are essential for virtual cytopathology examinations, teaching, or consultative telecytology. Visualization of diagnostic criteria through 2D or 3D imaging is critical. Panoptiq panoramic WSI with integrated z-stacked video clips enables optimal applied telecytology.
               
Click one of the above tabs to view related content.