LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Involvement of the cAMP-Dependent Pathway in Dextromethorphan-Induced Inhibition of Spontaneous Glutamate Transmission in the Nucleus Tractus Solitarius Neurons of Guinea Pigs

Photo by dnevozhai from unsplash

Dextromethorphan (DEX) presynaptically decreases glutamatergic transmission in second-order neurons of the nucleus tractus solitarius (TS). To clarify the inhibitory mechanism of DEX, the present study examined the interaction of DEX… Click to show full abstract

Dextromethorphan (DEX) presynaptically decreases glutamatergic transmission in second-order neurons of the nucleus tractus solitarius (TS). To clarify the inhibitory mechanism of DEX, the present study examined the interaction of DEX with cAMP. The effects of DEX on miniature and TS-evoked excitatory postsynaptic currents (mEPSCs and eEPSCs) were recorded under activation of the cAMP-dependent pathway using the brainstem slices. An increase in cAMP by forskolin counteracted the inhibitory effect of DEX on mEPSCs. Eight-Bromo-cAMP and N-ethylmaleimide also attenuated the DEX effect. However, forskolin had negligible effects on the DEX-induced inhibition of eEPSCs. This suggests that DEX decreases spontaneous glutamate release by inhibiting the cAMP-dependent pathway and synchronous release by another unknown mechanism.

Keywords: camp; dex; dependent pathway; nucleus tractus; tractus solitarius; camp dependent

Journal Title: Pharmacology
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.