LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

The Effect of Antenatal Betamethasone on White Matter Inflammation and Injury in Fetal Sheep and Ventilated Preterm Lambs

Photo from wikipedia

Antenatal administration of betamethasone (BM) is a common antecedent of preterm birth, but there is limited information about its impact on the acute evolution of preterm neonatal brain injury. We… Click to show full abstract

Antenatal administration of betamethasone (BM) is a common antecedent of preterm birth, but there is limited information about its impact on the acute evolution of preterm neonatal brain injury. We aimed to compare the effects of maternal BM in combination with mechanical ventilation on the white matter (WM) of late preterm sheep. At 0.85 of gestation, pregnant ewes were randomly assigned to receive intra-muscular (i.m.) saline (n = 9) or i.m. BM (n = 13). Lambs were delivered and unventilated controls (UVCSal, n = 4; UVCBM, n = 6) were humanely killed without intervention; ventilated lambs (VentSal, n = 5; VentBM, n = 7) were injuriously ventilated for 15 min, followed by conventional ventilation for 75 min. Cardiovascular and cerebral haemodynamics and oxygenation were measured continuously. The cerebral WM underwent assessment of inflammation and injury, and oxidative stress was measured in the cerebrospinal fluid (CSF). In the periventricular and subcortical WM tracts, the proportion of amoeboid (activated) microglia, the density of astrocytes, and the number of blood vessels with protein extravasation were higher in UVCBM than in UVCSal (p < 0.05 for all). During ventilation, tidal volume, mean arterial pressure, carotid blood flow, and oxygen delivery were higher in VentBM lambs (p < 0.05 vs. VentSal). In the subcortical WM, microglial infiltration was increased in the VentSal group compared to UVCSal. The proportion of activated microglia and protein extravasation was higher in the VentBM group compared to VentSal within the periventricular and subcortical WM tracts (p < 0.05). CSF oxidative stress was increased in the VentBM group compared to UVCSal, UVCBM, and VentSal groups (p < 0.05). Antenatal BM was associated with inflammation and vascular permeability in the WM of late preterm fetal sheep. During the immediate neonatal period, the increased carotid perfusion and oxygen delivery in BM-treated lambs was associated with increased oxidative stress, microglial activation and microvascular injury.

Keywords: inflammation injury; inflammation; fetal sheep; betamethasone; injury; white matter

Journal Title: Developmental Neuroscience
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.