Background: Sepsis is a pathological host response to infection leading to vascular barrier breakdown due to elevated levels of angiopoietin-2 (Angpt-2) and vascular endothelial growth factor-A (VEGF-A). Here, we tested… Click to show full abstract
Background: Sepsis is a pathological host response to infection leading to vascular barrier breakdown due to elevated levels of angiopoietin-2 (Angpt-2) and vascular endothelial growth factor-A (VEGF-A). Here, we tested a novel heterodimeric bispecific monoclonal IgG1-cross antibody of Angpt-2 and VEGF – termed “A2V.” Methods: Cecal ligation and puncture was used to induce murine polymicrobial sepsis. Organs and blood were harvested for fluorescence immunohistochemistry and RT-PCR, and survival was recorded. In vitro endothelial cells were stimulated with plasma from septic shock patients costimulated with A2V or IgG antibody followed by immunocytochemistry and real-time transendothelial electrical resistance. Results: Septic mice treated with A2V had a reduced induction of the endothelial adhesion molecule ICAM-1, leading to a trend towards less transmigration of inflammatory cells (A2V: 42.2 ± 1.0 vs. IgG 48.5 ± 1.7 Gr-1+ cells/HPF, p = 0.08) and reduced tissue levels of inflammatory cytokines (e.g., IL-6 mRNA: A2V 9.4 ± 3.2 vs. IgG 83.9 ± 36.7-fold over control, p = 0.03). Endothelial permeability was improved in vivo and in vitro in stimulated endothelial cells with septic plasma. Survival was improved by 38% (p = 0.02). Conclusion: Dual inhibition of Angpt-2 and VEGF-A improves murine sepsis morbidity and mortality, making it a potential therapeutic against vascular barrier breakdown.
               
Click one of the above tabs to view related content.