LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Dl-3-n-Butylphthalide Protects against Memory Deficits in Vascular Dementia Rats by Attenuating Pyroptosis via TLR-4/NF-κB Signaling Pathway.

Photo from wikipedia

INTRODUCTION Inflammation is closely associated with the pathogenesis of vascular dementia (VD). Dl-3-n-butylphthalide (NBP) is a small molecule compound extracted from the seeds of Chinese celery, which have anti-inflammatory properties… Click to show full abstract

INTRODUCTION Inflammation is closely associated with the pathogenesis of vascular dementia (VD). Dl-3-n-butylphthalide (NBP) is a small molecule compound extracted from the seeds of Chinese celery, which have anti-inflammatory properties in animal models of acute ischemia and patients with stroke. In this experiment, we studied the protective effects of NBP in a rat model of VD induced by permanent bilateral occlusion of the common carotid arteries and investigated the role of the TLR-4/NF-κB inflammatory signaling pathway in the pathology of VD. METHODS The Morris water maze test was used to evaluate cognitive deficits in the VD rats. Western blot, immunohistochemistry, and PCR analyses were used to analyze the molecular basis of the inflammatory response. RESULTS NBP significantly improved the learning and memory ability of VD rats. With regard to the protective mechanism, the results showed that NBP significantly downregulated the relative expression of Cleaved Cas-1/Cas-1 and Cleaved GSDMD/GSDMD. Moreover, NBP decreased the levels of the TLR-4 and NF-κB (P65) protein and phosphorylation of P65 in the hippocampus of VD rats via the TLR-4/NF-κB signaling pathway. CONCLUSION These findings demonstrate that NBP protects against memory deficits in permanent bilateral common carotid artery occlusion-induced VD rats by attenuating pyroptosis via the TLR-4/NF-κB signaling pathway.

Keywords: signaling pathway; vascular dementia; tlr signaling; memory; tlr; via tlr

Journal Title: Neuropsychobiology
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.