Introduction: Pediatric obesity and diabetes has increased over the last several decades. While the role of common adipokines on metabolic parameters has been well studied in adults, the relationship of… Click to show full abstract
Introduction: Pediatric obesity and diabetes has increased over the last several decades. While the role of common adipokines on metabolic parameters has been well studied in adults, the relationship of novel adipokines and hepatokines in pediatric type 1 (T1D) and type 2 diabetes (T2D) is not well understood. This study assessed novel adipokines C1q/TNF-related proteins (CTRP1 and CTRP9), and hepatokine fibroblast growth factor 21 (FGF21) in youth with T1D and T2D diabetes. Methods: Participants (n = 80) with T1D (n = 40) enrolled in the Pediatric Diabetes Consortium (PDC) T1D NeOn registry, and T2D (n = 40) from the PDC T2D registry. Cross-sectional analysis compared adipokines (CTRP1, CTRP9, FGF21) between T1D and T2D, and regression models assessed adipokine relationship with clinical characteristics. Results: The mean age of the participants was 14.9 ± 2 years, and 50% were female. T2D participants had a shorter diabetes duration (p = 0.0009), higher weight (p < 0.0001), and BMI (p < 0.0001) than T1D participants. CTRP9 levels were higher in T1D (13,903.6 vs. 3,608.5 pg/mL, p = 0.04) than T2D, and FGF21 levels were higher in T2D (113.1 vs. 70.6 pg/mL, p = 0.03) than T1D, with no differences in CTRP1. In regression analysis of T1D, CTRP9 was positively associated with C-peptide (p = 0.006), and FGF21 was positively associated with hemoglobin A1c (p = 0.04). In T2D, CTRP1 was positively associated with HbA1c (p < 0.001) and glucose (p = 0.004), even after controlling for age, sex, and BMI. Conclusions: CTRP9 levels are higher in youth with T1D compared to T2D, and FGF21 levels are higher in youth with T2D than T1D. Novel adipokines are related to metabolic homeostasis in the inflammatory milieu of pediatric diabetes.
               
Click one of the above tabs to view related content.