LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

In vivo Evidence of Arterial Dynamic Properties Alteration in Atherosclerotic Rabbit.

Photo from wikipedia

OBJECTIVES Atherosclerosis severely damages the arterial wall. The aim of this study was to assess in vivo, for the first time, arterial dynamic properties, reactivity, and stiffness in atherosclerotic (ATH)… Click to show full abstract

OBJECTIVES Atherosclerosis severely damages the arterial wall. The aim of this study was to assess in vivo, for the first time, arterial dynamic properties, reactivity, and stiffness in atherosclerotic (ATH) rabbits. METHODS The rabbits were fed with 0.3% cholesterol diet. Femoral artery (FA) or abdominal aorta (AA) diameter was recorded by echotracking, together with blood pressure. Arterial reactivity after local administration of agents and stiffness were measured as diameter or pulsatile diameter changes. RESULTS FA dilation induced by acetylcholine was reduced in the function of diet duration (9-65 weeks). With mid-term diet duration (35-45 weeks), the dilation to nitroprusside was greatly reduced; the constriction to norepinephrine was reduced but not that to serotonin, thromboxane agonist, or angiotensin II. After 17- and 28-week diet AA and FA stiffness were increased while distensibility was reduced. Arterial stiffness measured by regional pulse wave velocity was unaltered. We observed that after 28-week diet, FA exhibited a stiffened wall at the plaque level and higher distensibility at the upstream site. DISCUSSION/CONCLUSION Arterial reactivity and compliance were greatly modified by atherosclerosis, at various degrees dependent on diet duration. ATH rabbit is therefore a suitable model for in vivo investigations of treatments targeting dynamic properties of arterial wall.

Keywords: arterial dynamic; vivo evidence; rabbit; dynamic properties; evidence arterial; diet duration

Journal Title: Journal of vascular research
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.