LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Transcriptional Analysis of Microsatellites in Velvetbean Caterpillar Anticarsia gemmatalis Hübner, 1818

Photo by dawson2406 from unsplash

Brazil is the largest producer of soybeans in the world. The vast extent of soybean plantations across the Brazilian territory exposes this crop to attack by several insects, including the… Click to show full abstract

Brazil is the largest producer of soybeans in the world. The vast extent of soybean plantations across the Brazilian territory exposes this crop to attack by several insects, including the velvetbean caterpillar, Anticarsia gemmatalis. One of the alternatives used to control this insect are the toxins produced by Bacillus thuringiensis (Bt). However, in some cases, resistance to these toxins has been reported in the laboratory. Despite the ecological and economic impact of the velvetbean caterpillar, there are few studies on the genetic structure of this species, especially with regard to microsatellites. In this paper, we carried out a comparative transcriptional analysis of microsatellites in resistant (RES) and susceptible (SUS) strains of A. gemmatalis challenged and not challenged with Bt toxins. According to the number of sequences analyzed in each group, a 7.9% simple sequence repeat (SSR) rate was identified for the SUS library, and 7.4% for SUSBt. For the RES group, this value was 8.5% and for the RESBt 7.7%. Most of the fragments found showed a shorter repeat pattern, located in mono- and trinucleotide motifs. Among the 128 types of SSR motifs, it was possible to notice a large amount of adenine and thymine in relation to guanine and cytosine, which was also seen in chromosomes after staining with base-specific fluorochromes DAPI/CMA3, highlighting DAPI-positive regions. Although the participation of microsatellites in the resistance mechanism of A. gemmatalis to Bt is not clear, the results obtained in this work contribute to a better understanding of the repetitive DNA found in transcribed regions of a non-model organism.

Keywords: transcriptional analysis; anticarsia gemmatalis; analysis microsatellites; caterpillar anticarsia; velvetbean caterpillar

Journal Title: Cytogenetic and Genome Research
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.