With the increase in data rates, signal integrity analysis has become more time and memory intensive. Simulation tools such as 3D electromagnetic field solvers can be accurate but slow, whereas… Click to show full abstract
With the increase in data rates, signal integrity analysis has become more time and memory intensive. Simulation tools such as 3D electromagnetic field solvers can be accurate but slow, whereas faster models such as design equations and equivalent circuit models lack accuracy. Artificial neural networks (ANNs) have recently gained popularity in the RF and microwave circuit modeling community as a new modeling tool. This has in turn spurred progress towards applications of neural networks in signal integrity. A neural network can learn from a set of data generated during the design process. It can then be used as a fast and accurate modeling tool to replace conventional approaches. This paper reviews the recent advancement of neural networks in the area of signal integrity modeling. Key advancements are considered, particularly those that assist the ability of the neural network to cope with an increasing number of inputs and handle large amounts of data.
               
Click one of the above tabs to view related content.