The high integration of wind energy in power systems requires operating reserves to ensure the reliability and security in the operation. The intermittency and volatility in wind power sets a… Click to show full abstract
The high integration of wind energy in power systems requires operating reserves to ensure the reliability and security in the operation. The intermittency and volatility in wind power sets a challenge for day-ahead dispatching in order to schedule generation resources. Therefore, the quantification of operating reserves is addressed in this paper using extreme values through Monte-Carlo simulations. The uncertainty in wind power forecasting is captured by a generalized extreme value distribution to generate scenarios. The day-ahead dispatching model is formulated as a mixed-integer linear quadratic problem including ramping constraints. This approach is tested in the IEEE-118 bus test system including integration of wind power in the system. The results represent the range of values for operating reserves in day-ahead dispatching.
               
Click one of the above tabs to view related content.