LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Maximize resource utilization based channel access model with presence of reactive jammer for underwater wireless sensor network

Photo from wikipedia

Underwater sensor networks (UWSNs) are vulnerable to jamming attacks. Especially, reactive jamming which emerged as a greatest security threat to UWSNs. Reactive jammer are difficult to be removed, defended and… Click to show full abstract

Underwater sensor networks (UWSNs) are vulnerable to jamming attacks. Especially, reactive jamming which emerged as a greatest security threat to UWSNs. Reactive jammer are difficult to be removed, defended and identified. Since reactive jammer can control and regulate (i.e., the duration of the jam signal) the probability of jamming for maintaining high vulnerability with low detection probability. The existing model are generally designed considering terrestrial wireless sensor networks (TWSNs). Further, these models are limited in their ability to detect jamming correctly, distinguish between the corrupted and uncorrupted parts of a packet, and be adaptive with the dynamic environment. Cooperative jamming model has presented in recent times to utilize resource efficiently. However, very limited work is carried out using cooperative jamming detection. For overcoming research challenges, this work present Maximize Resource Utilization based Channel Access (MRUCA). The MRUCA uses cross layer design for mitigating reactive jammer (i.e., MRUCA jointly optimizes the cooperative hopping probabilities and channel accessibility probabilities of authenticated sensor device). Along with channel, load capacity of authenticated sensor device is estimated to utilize (maximize) resource efficiently. Experiment outcome shows the proposed MRUCA model attain superior performance than state-of-art model in terms of packet transmission, BER and Detection rate.

Keywords: reactive jammer; model; sensor; maximize resource

Journal Title: International Journal of Electrical and Computer Engineering
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.