Digital audio signal is one of the most important data type at present, it is used in various vital applications, such as human knowledge, security and banking applications, most applications… Click to show full abstract
Digital audio signal is one of the most important data type at present, it is used in various vital applications, such as human knowledge, security and banking applications, most applications require signal identification and recognition, and to increase the efficiency of these applications we must seek a method to represent the audio file by a small set of values called a features vector. In this paper research we will introduce an enhanced method of features extraction based on k-mean clustering. The method will be tested and implemented to show how the proposed method can reduce the efforts of voice identification, and can minimize the recognition time a set of voice extracted features must be used instead of using the voice wave file.
               
Click one of the above tabs to view related content.