The broadcast nature of wireless networks makes them susceptible to attacks by eavesdroppers than wired networks. Any untrusted node can eavesdrop on the medium, listen to transmissions and obtain sensitive… Click to show full abstract
The broadcast nature of wireless networks makes them susceptible to attacks by eavesdroppers than wired networks. Any untrusted node can eavesdrop on the medium, listen to transmissions and obtain sensitive information within the wireless network. In this paper, we propose a new mechanism which combines the advantages of two techniques namely iJam and OFDM phase encryption. Our modified mechanism makes iJam more bandwidth efficient by using Alamouti scheme to take advantage of the repetition inherent in its implementation. The adversary model is extended to the active adversary case, which has not been done in the original work of iJam and OFDM phase encryption. We propose, through a max min optimization model, a framework that maximizes the secrecy rate by means of a friendly jammer. We formulate a Zero-Sum game that captures the strategic decision making between the transmitter receiver pair and the adversary. We apply the fictitious play (FP) algorithm to reach the Nash equilibria (NE) of the game. Our simulation results show a significant improvement in terms of the ability of the eavesdropper to benefit from the received information over the traditional schemes, i.e. iJam or OFDM phase encryption.
               
Click one of the above tabs to view related content.