LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Traffic-aware adaptive server load balancing for software defined networks

Photo from wikipedia

Servers in data center networks handle heterogenous bulk loads. Load balancing, therefore, plays an important role in optimizing network bandwidth and minimizing response time. A complete knowledge of the current… Click to show full abstract

Servers in data center networks handle heterogenous bulk loads. Load balancing, therefore, plays an important role in optimizing network bandwidth and minimizing response time. A complete knowledge of the current network status is needed to provide a stable load in the network. The process of network status catalog in a traditional network needs additional processing which increases complexity, whereas, in software defined networking, the control plane monitors the overall working of the network continuously. Hence it is decided to propose an efficient load balancing algorithm that adapts SDN. This paper proposes an efficient algorithm TA-ASLB-traffic-aware adaptive server load balancing to balance the flows to the servers in a data center network. It works based on two parameters, residual bandwidth, and server capacity. It detects the elephant flows and forwards them towards the optimal server where it can be processed quickly. It has been tested with the Mininet simulator and gave considerably better results compared to the existing server load balancing algorithms in the floodlight controller. After experimentation and analysis, it is understood that the method provides comparatively better results than the existing load balancing algorithms.

Keywords: load balancing; load; software defined; server load; network

Journal Title: International Journal of Electrical and Computer Engineering
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.