LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Bayesian learning scheme for sparse DOA estimation based on maximum-a-posteriori of hyperparameters

Photo by hajjidirir from unsplash

In this paper, the problem of direction of arrival estimation is addressed by employing Bayesian learning technique in sparse domain. This paper deals with the inference of sparse Bayesian learning… Click to show full abstract

In this paper, the problem of direction of arrival estimation is addressed by employing Bayesian learning technique in sparse domain. This paper deals with the inference of sparse Bayesian learning (SBL) for both single measurement vector (SMV) and multiple measurement vector (MMV) and its applicability to estimate the arriving signal’s direction at the receiving antenna array; particularly considered to be a uniform linear array. We also derive the hyperparameter updating equations by maximizing the posterior of hyperparameters and exhibit the results for nonzero hyperprior scalars. The results presented in this paper, shows that the resolution and speed of the proposed algorithm is comparatively improved with almost zero failure rate and minimum mean square error of signal’s direction estimate.

Keywords: learning scheme; sparse doa; estimation; scheme sparse; bayesian learning

Journal Title: International Journal of Electrical and Computer Engineering
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.