LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

The effects of using variable lengths for degraded signal acquisition in GPS receivers

Photo from wikipedia

The signal acquisition in GPS receivers is the first and very crucial process that may affect the overall performance of a navigation receiver. Acquisition program initiates a searching operation on… Click to show full abstract

The signal acquisition in GPS receivers is the first and very crucial process that may affect the overall performance of a navigation receiver. Acquisition program initiates a searching operation on received navigation signals to detect and identify the visible satellites. However, signal acquisition becomes a very challenging task in a degraded environment (i.e, dense urban) and the receiver may not be able to detect the satellites present in radio-vicinity, thus cannot estimate an accurate position solution. In such environments, satellite signals are attenuated and fluctuated due to fading introduced by Multipath and NLOS reception. To perform signal acquisition in such degraded environments, larger data accumulation can be effective in enhancing SNR, which tradeoff huge computational load, prolonged acquisition time and high cost of receiver. This paper highlights the effects of fading on satellite signal acquisition in GPS receiver through variable data lengths and SNR comparison, and then develops a statistical relationship between satellite visibility and SNR. Furthermore it also analyzes/investigates the tradeoff between computation load and signal data length.

Keywords: acquisition; signal acquisition; gps receivers; acquisition gps; effects using

Journal Title: International Journal of Electrical and Computer Engineering
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.