LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Robotic hex-nut sorting system with deep learning

Photo from wikipedia

This article exposes the design and implementation of an automation system based on a robotic arm for hex-nut classification, using pattern recognition and image processing.  The robotic arm work based… Click to show full abstract

This article exposes the design and implementation of an automation system based on a robotic arm for hex-nut classification, using pattern recognition and image processing.  The robotic arm work based on three servo motors and an electromagnetic end effector. The pattern recognition implemented allows classifying three different types of hex-nut through deep learning algorithms based on convolutional neural network architectures. The proposed methodology exposes four phases: the first is the design, implementation, and control of a robotic arm. The second is the capture, classification, and image treatment; the third allows gripping the nut through the robot’s inverse kinematic. The final phase is the re-localization of the hex-nut in the respective container. The automation system successfully classifies all the types of hex-nuts, where the convolutional network used is an efficient and recent pattern recognition method, with an accuracy of 100% in 150 iterations. This development allows for obtaining a novel algorithm for robotic applications in hex-nut sorting.

Keywords: system; hex nut; nut sorting; hex; robotic arm; deep learning

Journal Title: International Journal of Electrical and Computer Engineering
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.