LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

A non-negative matrix factorization based clustering to identify potential tuna fishing zones

Photo by jediahowen from unsplash

Many nonnegative matrix factorization based clusterings are employed in discovering pattern and knowledge. Considering the sparseness nature of our data set about the daily tuna fishing data, we attempted to… Click to show full abstract

Many nonnegative matrix factorization based clusterings are employed in discovering pattern and knowledge. Considering the sparseness nature of our data set about the daily tuna fishing data, we attempted to utilize a clustering approach, which is based on non-negative matrix factorization. Adding sparseness constraint and assigning good initial value in the modified NMF method, a proposed algorithm Direct-NMFSC yielded better result cluster compared to other methods which are also utilizing sparse constraint to their approaches, SNMF and NMFSC. The result of this study shows that Direct-NMFSC has 5.376 times of iteration number less than NMFSC in average with 531.97 as the CH index result. The determination of potential fishing zones is one of the essential efforts in the potential fishing zone mapping system for tuna fishing. By means of this novel data-driven study to construct the information and to identify the potential tuna fishing zones is done. We also showed that utilizing the Direct-NMFSC can spot and identify the potential tuna fishing zones presented in red cluster that covers both the spatial and temporal information.

Keywords: matrix factorization; fishing zones; identify potential; fishing; tuna fishing

Journal Title: International Journal of Electrical and Computer Engineering
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.