LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Design of a Selective Filter based on 2D Photonic Crystals Materials

Photo by radowanrehan from unsplash

Two dimensional finite differences temporal domain (2D-FDTD) numerical simulations are performed in cartesian coordinate system to determine the dispersion diagrams of transverse electric (TE) of a two-dimension photonic crystal (PC)… Click to show full abstract

Two dimensional finite differences temporal domain (2D-FDTD) numerical simulations are performed in cartesian coordinate system to determine the dispersion diagrams of transverse electric (TE) of a two-dimension photonic crystal (PC) with triangular lattice. The aim of this work is to design a filter with maximum spectral response close to the frequency 1.55 μm. To achieve this frequency, selective filters PC are formed by combination of three waveguides W 1 K A wherein the air holes have of different normalized radii respectively r 1 /a =0.44, r 2 /a =0.288 and r 3 /a = 0.3292 ( a: is the periodicity of the lattice with value 0.48 μm). Best response is obtained when we insert three small cylindrical cavities (with normalized radius of 0.17) between the two half-planes of photonic crystal strong lateral confinement.

Keywords: design selective; selective filter; filter based; filter; based photonic; photonic crystals

Journal Title: International Journal of Electrical and Computer Engineering
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.