LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

A New Hybrid Robust Fault Detection of Switching Systems by Combination of Observer and Bond Graph Method

Photo from wikipedia

In this paper, the problem of robust Fault Detection (FD) for continuous time switched system is tackled using a hybrid approach by combination of a switching observer and Bond Graph… Click to show full abstract

In this paper, the problem of robust Fault Detection (FD) for continuous time switched system is tackled using a hybrid approach by combination of a switching observer and Bond Graph (BG) method. The main criteria of an FD system including the fault sensitivity and disturbance attenuation level in the presence of parametric uncertainties are considered in the proposed FD system. In the first stage, an optimal switching observer based on state space representation of the BG model is designed in which simultaneous fault sensitivity and disturbance attenuation level are satisfied using H_-/H_infty index. In the second stage, the Global Analytical Redundancy Relations (GARRs) of the switching system are derived based on the output estimation error of the observer, which is called Error-based Global Analytical Redundancy Relations (EGARRs). The parametric uncertainties are included in the EGARRs, which define the adaptive thresholds on the residuals. A constant term due to the effect of disturbance is also considered in the thresholds. In fact, a two-stage FD system is proposed wherein some criteria may be considered in each stage. The efficiency of the proposed method is shown for a two-tank system.

Keywords: fault; system; bond graph; fault detection; robust fault; observer bond

Journal Title: International Journal of Electrical and Computer Engineering
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.