LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Channel length scaling and electrical characterization of graphene field effect transistor (GFET)

Photo from wikipedia

The exclusive monoatomic framework of graphene makes it as an alluring material to be implemented in electronic devices. Thus, using graphene as charge carrying conducting channel material in Field Effect… Click to show full abstract

The exclusive monoatomic framework of graphene makes it as an alluring material to be implemented in electronic devices. Thus, using graphene as charge carrying conducting channel material in Field Effect Transistors (FET) expedites the opportunities for production of ultrasensitive biosensors for future device applications. However, performance of GFET is influenced by various parameters, particularly by the length of conducting channel. Therefore, in this study we have investigated channel length scaling in performance of graphene field effect transistor (GFET) via simulation technique using Lumerical DEVICE software. The performance was analyzed based on electrical characterization of GFET with long and short conducting channels. It proves that conducting channel lengths have vast effect on ambipolar curve where short channel induces asymmetry in transfer characteristics curve where the n-branch is suppressed. Whereas for output characteristics, the performance of GFET heavily degraded as the channel length is reduced in short channels of GFET. Therefore, channel length scaling is a vital parameter in determining the performance of GFET in various fields, particularly in biosensing applications for ultrasensitive detection.

Keywords: field effect; channel length; gfet

Journal Title: Indonesian Journal of Electrical Engineering and Computer Science
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.