LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Algorithm for assessing forest stand productivity index using leaf area index

Photo by renran from unsplash

This paper describes a development of an algorithm for assessing stand productivity by considering the stand variables. Forest stand productivity is one of the crucial information that required to establish… Click to show full abstract

This paper describes a development of an algorithm for assessing stand productivity by considering the stand variables. Forest stand productivity is one of the crucial information that required to establish the business plan for unit management at the beginning of forest planning activity. The main study objective is to find out the most significant and accurate variable combination to be used for assessing the forest stand productivity, as well as to develop productivity estimation model based on leaf area index. The study found the best stand variable combination in assessing stand productivity were density of poles (X2), volume of commercial tree having diameter at breast height (dbh) 20-40 cm (X16), basal area of commercial tree of dbh >40 cm (X20) with Kappa Accuracy of 90.56% for classifying into 5 stand productivity classes. It was recognized that the examined algorithm provides excellent accuracy of 100% when the stand productivity was classified into only 3 classes. The best model for assessing the stand productivity index with leaf area index is y = 0.6214x - 0.9928 with R2= 0.71, where y is productivity index and x is leaf area index.

Keywords: area index; leaf area; productivity; stand productivity; index

Journal Title: Indonesian Journal of Electrical Engineering and Computer Science
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.