LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Novel Lesional Transcriptional Signature Separates Atherosclerosis With and Without Diabetes in Yorkshire Swine and Humans

Photo from wikipedia

Supplemental Digital Content is available in the text. Objective: Accelerated atherosclerosis in diabetes constitutes an ongoing challenge despite optimal medical therapies. This study aimed to identify evolutionarily conserved lesion-based regulatory… Click to show full abstract

Supplemental Digital Content is available in the text. Objective: Accelerated atherosclerosis in diabetes constitutes an ongoing challenge despite optimal medical therapies. This study aimed to identify evolutionarily conserved lesion-based regulatory signaling networks in diabetic versus nondiabetic conditions during the development of atherosclerosis in an initial translational effort to provide insights for targets. Approach and Results: Serial 3-mm coronary artery segments of hypercholesterolemic Yorkshire swine and diabetic-hypercholesterolemic swine were characterized as mild, moderate, or severe phenotypic manifestations of coronary atherosclerosis based on histopathologic examination. Lesional RNA sequencing was performed (n=3–8 lesions per group) corresponding to increasing phenotypic severity. Differentially expressed genes, transcription factors, upstream regulators, and hubs were validated using the NanoString technology and a human atherosclerotic specimen cohort. Despite similar stage histopathologic characterization of lesions, genome-wide transcriptomics revealed gene sets and nodal signaling pathways uniquely expressed in diabetic lesions including signaling pathways for Th17, IL (interleukin)-17F, TWEAK (TNF [tumor necrosis factor]-related weak inducer of apoptosis), CD27, and PI3K/Akt. In contrast, pathways of nondiabetic lesions involved TREM-1 and Th1 and Th2 responses during the initiation stage, whereas networks for mitochondrial dysfunction, oxidative phosphorylation, and lipid metabolism emerged with progression. RNA sequencing data were validated in a human atherosclerosis specimen cohort using machine learning algorithms. F8, MAPKAPK3, and ITGB1 emerged as powerful genes for clustering diabetic versus nondiabetic lesions and for separating different degrees of atherosclerosis progression. Conclusions: This study identifies evolutionarily conserved gene signatures and signaling pathways in a stage-specific manner that successfully distinguishes diabetes- and non–diabetes-associated atherosclerosis. These findings establish new molecular insights and therapeutic opportunities to address accelerated atherosclerotic lesion formation in diabetes.

Keywords: atherosclerosis; transcriptional signature; signaling pathways; lesional transcriptional; novel lesional; yorkshire swine

Journal Title: Arteriosclerosis, Thrombosis, and Vascular Biology
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.